Some Clarifications, New Species, and New Combinations in American Cynanchinae (Asclepiadaceae)

Sigrid Liede
Abteilung Spezielle Botanik, Universität Ulm, 89069 Ulm, Germany
Ulrich Meve
Institut für Botanik, Westf. Wilhelms-Universität Münster, Schloßgarten 3, 48149 Münster, Germany

Abstract

Two new species of Cynanchum in South America are described, C. bifidum Liede \& Meve and C. trollii Liede \& Meve. One South American Cynanchum species is transferred to $O x$ ypetalum, fourteen to Metastelma, and four to Ditassa. Stelmatocodon and Fontellaea are recognized as synonyms of Philibertia.

The enormous variety of American Cynanchinae has puzzled even experienced specialists of the family. The difficulties presented by the often minute flowers and narrowly endemic ranges of the species are aggravated by the often insufficient descriptions without illustrations. While a thorough revision of Cynanchum and its relatives for the entire continent is not feasible at the moment, several new additions and clarifications are possible as a result of a long-term project of the first author.

Materials and Methods

The holdings of A, AAU, B, BM, CTES, G, GA, GB, L, LIL, LPB, M, MO, MPU, P, S, SGO, SI, UC, and USZ have been studied. Dried material was supplemented by our own collections of living and spirit material from Argentina, Bolivia, Chile, Mexico, and the United States. For corona terminology, Liede and Kunze (1993) have been followed; for clarification of gynostegium structures, see Liede (1996).

New Species

Cynanchum bifidum Liede \& Meve, sp. nov. TYPE: Ecuador. Azuay: $1-2 \mathrm{~km} \mathrm{~N}$ of Nieves, Ceja forest, 3000-3100 m, 16 Nov. 1988, Harling 25919 (holotype, GB). Figure 1.
C. intricato similis, sed differt in lobis coronae staminalis profunde bifidis.

Plants ascending, twining, $3-4 \mathrm{~m}$ high, richly branched, at least basally following a dichasially
branching pattern. Shoots perennial, herbaceous, densely covered with flexuous trichomes, $0.7-0.8$ mm long; internodes $15-50 \mathrm{~cm}$ long. Leaves estipulate, with $1-2-\mathrm{mm}$-long petiole, 2 colleters at the base of the leaves; leaf blades herbaceous, $8-10 \times$ $3-5 \mathrm{~mm}$, ovate, basally rounded, apically acute, entirely glabrous. Inflorescences always one per node, extra-axillary, sessile, 4-10-flowered, all flowers open synchronously, sciadioidal. Floral bracts ca. $0.7 \times 0.3 \mathrm{~mm}$, ovate, glabrous; pedicels $1-2 \mathrm{~mm}$ long, glabrous. Buds ca. $2.2 \times 1.2 \mathrm{~mm}$, globose, with imbricate aestivation. Calyx basally fused, abaxially glabrous, lobes ca. $1.2 \times 0.5 \mathrm{~mm}$, ovate, acute. Corolla cyathiform, basally fused, abaxially and adaxially greenish white, purple along the main nerves, glabrous; lobes $2.5-3 \times 1-1.2 \mathrm{~mm}$, oblong, apically obtuse, incurved. Corona gynostegial, white, $1.2-1.5 \mathrm{~mm}$ high, equaling the gynostegium in height, consisting of staminal and interstaminal parts just basally fused, staminal lobes laminar, deeply bifid, apically erect. Gynostegium ca. $0.8 \times$ 0.8 mm , atop a stipe, ca. 0.6 mm long. Anthers about as high as broad, pentagonal, abaxially convex; anther wings 0.35 mm long, not extending along the whole length of the anther, consisting of a distal and a proximal ridge; adjacent anther wings parallel to each other, basally widened, in the same plane as the anther. Connective appendages $0.35-$ $0.4 \times 0.25-0.3 \mathrm{~mm}$, ovate, narrower than the stamen, slightly inflexed. Pollinarium: corpusculum ca. 0.18 mm long, almost twice as long as broad, elliptical; caudicles ca. 0.075 mm long, cylindrical, straight, horizontal; pollinia apically attached to the caudicles, ca. $0.275 \times 0.1 \mathrm{~mm}$, ovoid, ovate in cross section. Stylar head ca. 0.5 mm diam., 0.375 mm high; upper part 0.125 mm high, tabular. Fruits, seeds, and chromosome number unknown.

This new species belongs in the C. microphyllum Kunth group, which is particularly diverse in the northeastern Andes. It is probably most closely re-

Figure 1. Cynanchum bifidum Liede \& Meve. -A. Habit. -B. Flower. -C. Pollinarium. (From Harling 25919, GB; drawn by U. Meve.)
lated to C. intricatum K. Schumann from the Pichincha area in Ecuador, but is clearly different by the deeply bifid corona lobes and the stronger dichasial branching pattern.

Cynanchum trollii Liede \& Meve, sp. nov. TYPE:
Bolivia. Cañanema: Río de la Pax, 1260 m, dry forest, 18 Mar. 1928, Troll 1675 (holotype, M). Figure 2 .

Herba scandens, foliis cordatis, inflorescentibus racemiformibus, corolla pubescenti, sed corona corollae inserta.

Plants ascending, twining. Shoots perennial, herbaceous, densely covered with erect trichomes, ca. 0.25 mm long, arranged along a single line. Internodes $12-17 \mathrm{~cm}$ long. "Stipules" $5-$ 10 mm long, ca. 6 mm wide, ovate. Leaves on a $10-40-\mathrm{mm}$-long petiole, 3 colleters at the base of

C

Figure 2. Cynanchum trollii Liede \& Meve. - A. Leaf. -B. Flower. -C. Adaxial side of corolla lobe with corona lobe inserted. -D. Gynostegium with corona. -E. Pollinarium. -F. Stylar head. (From Troll 1675, M; drawn by U. Meve.)
the leaves; leaf blades herbaceous, 40-55 $\times 20$ 35 mm , ovate, basally lobate; lobes $5-7 \mathrm{~mm}$ long, apically acute, adaxially and abaxially almost glabrous. Inflorescences frondulose, 15-20-flowered, 4-6 flowers open at the same time, bostrychoid, basally with one or two bifurcations; partial inflorescences geminiflorous; peduncles $0-12$ mm long, densely covered with flexuous trichomes, $0.2-0.3 \mathrm{~mm}$ long, arranged along a single line; rachis $8-15 \mathrm{~mm}$ long, angular. Floral bracts $0.5-1 \times 0.25-0.5 \mathrm{~mm}$, triangular. Pedicels $2-4 \mathrm{~mm}$ long, densely covered with flexuous, $0.1-0.15-\mathrm{mm}$-long trichomes arranged along a single line. Buds ca. $2 \times 2 \mathrm{~mm}$, globose, with imbricate aestivation. Calyx basally fused, abaxially with trichomes, lobes ca. $1.5 \times 0.75 \mathrm{~mm}$, ovate, apically obtuse. Corolla cyathiform, basally fused; lobes ca. $1.7 \times 1 \mathrm{~mm}$, oblong, apically
obtuse, incurved, abaxially with trichomes, adaxially with ca. $0.25-\mathrm{mm}$-long trichomes, concentrated on the apical and lateral parts. Corona corolline, oppositisepalous, ca. 1.3 mm high, shorter than the corolla, lobes laterally connate, laminar, rounded (slightly cucullate), erect, with straight margins, glabrous. Gynostegium ca. 1.7×1.4 mm , atop a stipe, ca. 0.5 mm long. Anthers broader than high, rectangular, abaxially convex; anther wings ca. 0.35 mm long, not extending along the whole length of the anther; consisting of a distal and a proximal ridge with space between distal and proximal ridge glabrous; adjacent anther wings parallel to each other. Connective appendages ca. $0.6 \times 0.3 \mathrm{~mm}$, ovate, narrower than the stamen, erect. Pollinarium: corpusculum ca. 0.2 mm long, almost twice as long as broad, elliptical; caudicles ca. 0.15 mm

Figure 3. Oxypetalum streptanthum (Malme) Liede \& Rua. -A. Flower. -B. Gynostegium with corona. -C. Corona. -D. Gynostegium. -E. Pollinarium. (A, B, D, E from I. Holmgren 950, S; C from Hensen 887, USZ; drawn by U. Meve.)
long, cylindrical, concavely recurved; pollinia subapically attached to the caudicles, ca. $0.4 \times$ 0.125 mm , ovoid, ovate in cross section. Stylar head ca. 1.25 mm diam., 0.55 mm high; upper part ca. 0.25 mm high, bifurcate. Fruits, seeds, and chromosome number unknown.

In all other Cynanchum species known to us, the insertion point of the corona is situated exactly at the point of union of the gynostegium (filament tube) and the corolla, and is derived structurally from the gynostegium (e.g., Kunze, 1982). In C. trollii, the attachment has shifted clearly toward the corolla. In asclepiad taxonomy, corona insertion is usually regarded as a genusdefining character. However, as it seems unwise to describe a new genus on such scanty material, the preliminary inclusion of C. trollii in Cynanchum seems adequate, since it fits the concept of the genus in all other characters. The lack of fruits prevents an answer to the question of whether the species is more closely related to subgenus Mellichampia Sundell (forming one fol-
licle per flower) or to the C. formosanum N. E. Brown group of species (invariably forming two follicles per flower).

New Combinations

Oxypetalum streptanthum (Malme) Liede \& Rua, comb. nov. Basionym: Cynanchum streptanthum Malme, Ark. Bot. 25A(7): 8. 1933. TYPE: Ecuador. Pichincha: Machachu, 2800 m, 12 Nov. 1920, I. Holmgren 950 (holotype, S). Figure 3.

Extension of known range: BOLIVIA. Cochabamba: Quillacollo, Chorojo, $3600 \mathrm{~m}, 28$ Aug. 1990, Hensen 887 (USZ); Arque, Sihuyalla, 3300 m, 5 Jan. 1992, Ibisch 832 (LPB).

Malme's (1933) excellent description needs no update. He mentioned that the name written on the specimen was Oxypetalum, but described it under Cynanchum because caudicular appendages were lacking. However, in one subgenus of Oxypetalum, subg. Cryptodus (E. Fournier) T. Meyer, caudicular
appendages are small or absent. The species shares with Oxypetalum subg. Cryptodus the twisted corolla lobes, long stylar head, and very erect twinned follicles, all features absent from other American members of Cynanchum.

METASTELMA R. BROWN

One of the most unfortunate decisions in the history of American Cynanchum was the inclusion of Metastelma within the genus (Woodson, 1941). Based on his experience of North American material only, Woodson did not appreciate the differences between Cynanchum and Metastelma as sufficient for generic recognition. Cynanchum is easily recognized by its gynostegial corona of fused staminal and interstaminal parts and its corolla lobes, which are either entirely glabrous or possess a few sparse, short, erect, verrucose trichomes on the adaxial side. Metastelma, in contrast, possesses a gynostegial corona that consists only of staminal parts and a densely bearded corolla. Leaf shape, which is invariably linear in Metastelma, and inflorescence structure, which is invariably sciadioidal (denoting an umbelliform inflorescence derived from a dichasial one; see also Liede \& Weberling, 1995) in Metastelma, though helpful in the field, do not constitute useful generic characters, because both characters are highly plastic in Cynanchum. Of the North American species with linear leaves, most conform to the concept of Metastelma (M. barbigerum Scheele, M. blodgetti A. Gray, M. californicum Bentham, M. latifolium Rose, M. minutiflorum Wiggins, M. northropiae Schlechter, M. palmeri S. Watson, M. pringlei A. Gray, M. watsonianum Standley). However, Cynanchum angustifolium Persoon and a few related species (Liede, 1997), despite linear leaves and sciadioidal inflorescences, show entirely glabrous corolla lobes and a ring-shaped corona of fused staminal and interstaminal parts and cannot be included in Metastelma according to this concept.
His ignorance of South American material further prevented Woodson (1941) from recognizing the close similarities between Metastelma and Ditassa R. Brown, which is different only in possessing a second staminal corona lobe and most likely constitutes the sister genus of Metastelma. As most South American workers have rather uncritically adopted Woodson's concept, several new combinations are necessary to clarify the concept of $C y$ nanchum in the Americas.

Metastelma chimantense (Morillo) Liede, comb. nov. Basionym: Cynanchum chimantense Morillo, Ernstia 4: 5. 1981. TYPE: Venezuela. Bolívar: Chimantá massif, $2000-2150 \mathrm{~m}$, J. Steyermark 75813 (holotype, VEN).

Metastelma eulaxiflorum (Lundell) Liede, comb. nov. Basionym: Cynanchum eulaxiflorum Lundell, Wrightia 5(9): 351. 1977. TYPE: Guatemala. Dept. Baja Verapaz: Union Barrios, E of km 154, 8 June 1975, Lundell \& Contreras 19401 (holotype, LL).

Metastelma exasperatum (R. W. Holm) Liede, comb. nov. Basionym: Cynanchum exasperatum R. W. Holm, Fieldiana 28: 507. 1953. TYPE: Venezuela. Mérida: Quebrada of Cuesta del Barro, 2530-2715 m, 11 May 1944, J. Steyermark 56474 (holotype, SGO; isotype, MO).

Metastelma hirtellum (Oliver) Liede, comb. nov. Basionym: Vincetoxicum hirtellum Oliver, Timehri 5: 199. 1886. Cynanchum hirtellum (Oliver) Badillo in Pittier et al., Cat. Fl. Venez. 2: 312. 1947. TYPE: Venezuela. Roraima: Im Turm 144 (holotype, F; isotype, MO).
Cynanchum revolutum R. W. Holm, Fieldiana 28(3): 508. 1953. TYPE: Venezuela. Bolívar: vicinity of "Misia Kathy camp" on mesa between Ptari-Tepui and So-roropan-Tepui, Steyermark 60236 (holotype, F; isotype, MO). Synonym: Morillo, Ernstia 37: 6. 1986.

Metastelma huberi (Morillo) Liede, comb. nov. Basionym: Cynanchum huberi Morillo, Ernstia 4: 7. 1981. TYPE: Venezuela. Territorio Federal Amazonas: Dept. Atabapo, alrededores de Canaripó, 98 m, O. Huber 1867 (holotype, VEN; isotype, MY).

Metastelma liesnerianum (L. O. Williams) Liede, comb. nov. Basionym: Cynanchum liesneriana L. O. Williams, Fieldiana 34: 102. 1972. TYPE: Costa Rica. Guanacaste: vicinity of Cañas, 12 Dec. 1969, Daubenmire 406 (holotype, F).

Metastelma longicoronatum (L. O. Williams) Liede, comb. nov. Basionym: Cynanchum longicoronatum L. O. Williams, Fieldiana 32: 37. 1968. TYPE: Mexico. Chiapas: 3 km S of La Trinitaria, $1700 \mathrm{~m}, 14$ Oct. 1965, Breedlove \& Raven 13199 (holotype, F; isotype, DS).

Metastelma nubicola (Morillo) Liede, comb. nov. Basionym: Cynanchum nubicola Morillo, Ernstia 2: 8. 1992. TYPE: Venezuela. Trujillo. Carache: carretera Carache-La Peña, 31.5 km E de Carache, 2000-2200 m, 28 Sep. 1988, Morillo 10543 (holotype, VEN; isotype, MERF).

Metastelma ovalifolium (A. Richard) Liede, comb. nov. Basionym: Astephanus ovalifolius A. Richard in Sagra, Hist. Fis. Cuba, Bot. 95. 1855. TYPE: Cuba. Prope Santiago, Linden 1847 (lectotype, designated here, P).

Metastelma paraquense (Morillo) Liede, comb. nov. Basionym: Cynanchum paraquense Morillo, Ernstia 4: 12. 1981. TYPE: Venezuela. Territorio Federal Amazonas: Cerro Paraque (Sipapo), 1600-1800 m, Feb. 1946, K. Phelps 38 (holotype, VEN).

Metastelma pubipetalum (Alain) Liede, comb. nov. Basionym: Cynanchum pubipetalum Alain, Mem. Soc. Cubana Hist. Nat. 22: 118. 1955, new name for Astephanus cubensis Kunth in Humboldt \& Bonpland, Nov. Gen. Sp. 3: 206. 1818. TYPE: Cuba. Prope Regla, Bonpland 5277 (lectotype, designated here, P).

Additional material seen. CUBA. 1861, C. Wright 1665 (G, det. Alain, 1955)

Metastelma quitense (K. Schumann) Liede, comb. nov. Basionym: Cynanchum quitense K. Schumann, Bot. Jahrb. Syst. 25: 728. 1898. SYNTYPES: Ecuador. Prope Quito, Dec. 1895, Sodiro 107/16 and ad montem Chimborazo in declivibus ad Pallatango, Sodiro 107/17 (syntypes, both presumably QPLS). Figure 4.

Additional material seen. ECUADOR. Pichincha: Vía mitad Mudo-Calacalí, 12 July 1950, Rambo 47275 (AAU); Vía mitad Mudo-Calacalí, 7 Apr. 1979, Jaramillo \& Silva 920 (AAU); Pichincha, 2800 m, 16 Apr. 1920, Holmgren 533 (G); Riobamba, NE of Riobamba, 2800 m, 17 Feb. 1934, Schimpff 726 (M); prope Riobamba, Sodiro s.n. (G).

Material annotated by K. Schumann was traced in G (Sodiro s.n., prope Riobamba), and so was the specimen on which Malme's (1933) amplified description was based (I. Holmgren 533, G). The species is slightly problematical because it possesses rather flat corona lobes, which seem basally fused in the poorly pressed Sodiro specimen. However, the better preserved Holmgren specimen shows that

Figure 4. Metastelma quitense (K. Schumann) Liede. -A. Flower. -B. Pollinarium. (From Jaramillo \& Silva 920, AAU; drawn by U. Meve.)
the corolla lobes, though flat, are fused to the gynostegium, but not to each other. In addition, the long-barbate corolla, which is more than twice as long as the gynostegium, fully corresponds with the concept of Metastelma.

Metastelma spruceanum (Morillo) Liede, comb. nov. Basionym: Cynanchum spruceanum Morillo, Ernstia 2: 64. 1992. TYPE: Ecuador. Andes. 1857-59, Spruce 5995 (holotype, G). Figure 5 .

Metastelma stipitatum (Correll) Liede, comb. nov. Basionym: Cynanchum stipitatum Correll, J. Arnold Arbor. 58: 44. 1977. TYPE: Bahamas. North Caicos: Bottle Creek Airstrip, 3 Sep. 1974, D. S. Correll 43436 (holotype, A).
Two additional species are almost certainly members of Metastelma; however, no authentic material could be traced and the descriptions are not provided with drawings: Cynanchum beatricis Morillo, Cynanchum manarae Morillo (Morillo, 1978).

DITASSA R. BROWN

The genus Ditassa has never seriously been claimed to constitute part of Cynanchum. However,

Figure 5. Metastelma spruceanum (Morillo) Liede. -A. Corona. -B. Gynostegium. -C. Pollinarium. (From Spruce 5995, G; drawn by U. Meve.)
in his early works, Morillo (e.g., 1981) did not recognize Ditassa. While most species have been transferred (e.g., Morillo, 1989), a few are still erroneously included in Cynanchum.

Ditassa buntingii (Morillo) Liede, comb. nov. Basionym: Cynanchum buntingii Morillo, Ernstia 51: 2. 1989. TYPE: Venezuela. Territorio Federal Amazonas: 11 km E de Maroa, 125 m , Steyermark \& Bunting 102813 (holotype, VEN).

Additional material seen. VENEZUELA. Amazonas: I km E of Maroa, Río Guaínía, 120-140 m, 25 Nov. 1953, Maguire, Wurdack \& Bunting 36410 (MO).

Ditassa franciscoi (Morillo) Liede, comb. nov. Basionym: Cynanchum franciscoi Morillo, Ernstia 51: 3. 1989. TYPE: Venezuela. Territorio Federal Amazonas: Dept. Rio Negro, Norte de Serrania de Unturan, 300-350 m, Guanchez 860 (holotype, VEN; isotype, TFA).

Additional material seen. VENEZUELA. Amazonia, 35 km S of Samariapo, towards Río Sipapo, 26 June 1975, Gentry \& Berry 14622 (MO).

Ditassa jahnii (Morillo) Liede, comb, nov. Basionym: Cynanchum jahnii Morillo, Ernstia 2: 7. 1992. TYPE: Venezuela. Mérida: Mucurubá, 2600-2700 m, 3 July 1930, Gehriger 289 (holotype, VEN; isotype, G).

Ditassa sobradoi (Morillo) Liede, comb. nov. Basionym: Cynanchum sobradoi Morillo, Ernstia 4: 13. 1981. TYPE: Venezuela. Territorio Federal Amazonas: 2 km NE de San Carlos de Río Negro, Morillo, Morillo \& Wood 3895 (holotype, VEN).

It is very possible that Cynanchum leptostephan-
um Diels from Ecuador, of which the holotype was destroyed in B and no isotypes were found, also constitutes a species of Ditassa.

Philibertia Kunth

In the course of the present study, an isotype of Stelmatodocon fiebrigii Schlechter was found in M. The specimen can clearly be attributed to the genus Philibertia Kunth, so this monotypic genus can be placed in synonymy of Philibertia. This material corresponds to the plant recently published as Fontellaea boliviana Morillo (Morillo, 1994), the only species of the genus Fontellaea Morillo. Thus, Fontellaea Morillo constitutes a further synonym of Philibertia.

Philibertia fiebrigii (Schlechter) Liede, comb. nov. Basionym: Stelmatodocon fiebrigii Schlechter, Bot. Jahrb. Syst. 37: 618. 1906. TYPE: Bolivia. Soledad prope San Luis, 1500 m , Jan. 1904, Fiebrig 2678 (lectotype, designated here, M).

Fontellaea boliviana Morillo, Anales Jard. Bot. Madrid 52(1): 36. 1994. Syn. nov. TYPE: Bolivia. La Paz: Quime, small town about 100 mi . from Oruro, 16 Mar. 1949, W. Brooke 5295 (holotype, BM).

Additional material seen. BOLIVIA. La Paz: Larecaja, on the trail between Laripata and Sorata, $3000 \mathrm{~m}, 14$ Mar. 1979, Keel 463 (LPB); Sorata, 14 km hacia Quiabaya, 2970-3000 m, Mar., Beck 1346 (LPB).

Acknowledgments. Thanks are due to the directors of the institutions listed in Materials and Methods for long-term loans of specimens. The DFG has financially supported the asclepiad work of SL (grants LI 496/1-4), including a field trip to South America. Gabriel Hugo Rua, Argentinian botanist, is collaborating with SL on Argentinian Asclepiadaceae and is the coauthor of the new combination in Oxypetalum.

Literature Cited

Kunze, H. 1982. Morphogenese und Synorganisation des Bestäubungsapparates einiger Asclepiadaceen. Beitr. Biol. Pflanzen 56: 133-170.
Liede, S. 1996. Anther differentiation in the Asclepiadaceae: Form and function. Pp. 221-235 in W. G. D'Arcy \& R. C. Keating (editors), The Anther: Form, Function and Phylogeny. Cambridge Univ. Press, New York and Cambridge.
1997. American Cynanchum (Asclepiadaceae)A preliminary infrageneric classification. Novon 7.

- \& H. Kunze. 1993. A descriptive system for corona analysis in Asclepiadaceae and Periplocaceae. Pl. Syst. Evol. 185: 275-284.
\& F. Weberling. 1995. Inflorescence structure in Asclepiadaceae. Pl. Syst. Evol. 197: 99-109.

Malme, G.O.A. 1933. Asclepiadaceae austroamericanae praecipue andinae. Ark. Bot. 25A(7): 1-26; tab.1-3.
Morillo, G. N. 1978. New taxa from the Avila and Naiguata Mountains, Venezuela. Brittonia 30: 47.
1981. Asclepiadaceae nuevas o interesantes de la Guyana Venezolana. Ernstia 4: 1-20.
1986. Estudio sobre la flora de las Guyanas. Asclepiadaceae. II. Especies nuevas o interesantes en Venezuela y Guyana. Ernstia 37: 1-42.
1989. Contribución al conocimento de las Asclepiadaceae suramericanas, principalmente de las Guyanas. Ernstia 51: 1-16.
1994. Fontellaea gen. nov., y otros novedades o aportaciones en Asclepiadceae andinas. Anales Jard. Bot. Madrid 52: 33-44.
Woodson, R. E. 1941. The North American Asclepiadaceae. Ann. Missouri Bot. Gard. 28: 193-244.

